Brief Communications

Synthesis of N-nitrooxazolidines and N-nitrotetrahydro-1,3-oxazines from N-(2-hydroxyalkyl)- and N-(3-hydroxyalkyl)sulfamates

V. A. Tartakovsky, A. S. Ermakov, Yu. A. Strelenko, D. B. Vinogradov, * and S. A. Serkov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: SECRETARY@ioc.ac.ru

A method was developed for the preparation of functionally substituted N-nitrooxazolidines and N-nitrotetrahydro-1,3-oxazines by nitration of the products obtained in the reactions of N-(2-hydroxyalkyl)- and N-(3-hydroxyalkyl)sulfamates with formaldehyde.

Key words: *N*-nitrooxazolidines, *N*-nitrotetrahydro-1,3-oxazines, *N*-(2-hydroxyalkyl)sulfamates, *N*-(3-hydroxyalkyl)sulfamates, formaldehyde, nitration, ¹H and ¹³C NMR spectroscopy, 2D NMR spectroscopy, IR spectroscopy, mass spectrometry.

The present study was aimed at the search for rational procedures for the preparation of the previously unknown N-nitro derivatives of oxazolidine based on derivatives of sulfamic acid. Although procedures for the synthesis of oxazolidine and tetrahydrooxazine derivatives were reported in the literature, $^{1-3}$ their N-nitro derivatives remain unknown.

Results and Discussion

With the aim of preparing N-nitro derivatives of oxazolidines $\bf 1$, we studied the reactions of the corresponding N-(2-hydroxyalkyl)sulfamates $\bf 2$ with formaldehyde. These reactions afforded complex mixtures of products. However, we found conditions under which the oxazolidine ring was predominantly formed (the initial components were taken in a ratio $\bf 2$: $CH_2O=1:1.1$, condensation was carried out at pH 7.7-8.2). The resulting compounds $\bf 3$ were not isolated in individual form because of their instability in solvents. Sulfamates $\bf 3$ were converted into nitro compounds $\bf 1$ in a total yield of 50-75% under the action of the HNO_3-Ac_2O mixture as a nitrating agent at the temperature from -10 to -5 °C (Scheme 1), which is indirect evidence in favor of the structure of compounds $\bf 3$.

 $R = CH_2OMe (a); CH_2Cl (b); CH_2N_3 (c); Me (d); H (e)$

Compounds 1 exist as liquids and were isolated by fractional distillation (Table 1).

Compound **1b** was converted into azidomethyl-substituted compound **1c** in 85% yield upon treatment with NaN₃ in DMF (Scheme 2).

It should be noted that the preparation of azide 1c through chloride 1b did not require fractional distilla-

Scheme 2

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 872-874, May, 2001.

1066-5285/01/5005-911 \$25.00 © 2001 Plenum Publishing Corporation

Table 1. Physicochemical properties and the yields of *N*-nitro-oxazolidines **1** and *N*-nitrotetrahydro-1,3-oxazines **6**

Com- pound	Yield (%)	B.p./°C (<i>p</i> /Torr)	Found Calculated (%)			Molecular formula
			С	Н	N	
1a	47	72—73	<u>37.09</u>	6.21 6.22	_	$C_5H_{10}N_2O_4$
1b	75	(0.7—0.9) 93—94	37.04 29.01	4.31	16.80	C ₄ H ₇ N ₂ O ₃ Cl
1c	49	(1.0-1.2) $102-103$	28.84 28.32	4.24 <u>4.28</u>	16.82 40.68	$C_4H_7N_5O_3$
	85*	(0.8-1.0)	27.75	4.08	40.45	
1d	48	60—61 (1.0—1.2)	_	_	21.64 21.20	$C_4H_8N_2O_3$
1e	61	49—50 (0.7—0.8)	31.11 30.51	5.14 5.12	23.84 23.72	$C_3H_6N_2O_3$
6a	42	**	36.90 36.36	6.19 6.10	_	$C_4H_8N_2O_3$
6b	42	**	25.01 24.88	3.65 3.65	21.91 21.76	$\mathrm{C_4H_7N_3O_6}$

^{*} Prepared from compound 1b (Scheme 2).

tion, and compound 1c was obtained in higher total yield.

N-(3-Hydroxyalkyl)sulfamates **4** behave analogously to N-(2-hydroxyalkyl)sulfamates **2**. Compounds **4** can also undergo cyclization in the reactions with formaldehyde to form compounds **5**, which were converted into the corresponding N-nitrotetrahydro-1,3-oxazines **6** in 40—45% yields upon treatment with the HNO_3 — Ac_2O mixture (Scheme 3). Compounds **6** were obtained in the crystalline form (see Table 1).

Scheme 3

X = X' = H (a); X = OH, $X' = ONO_2$ (b)

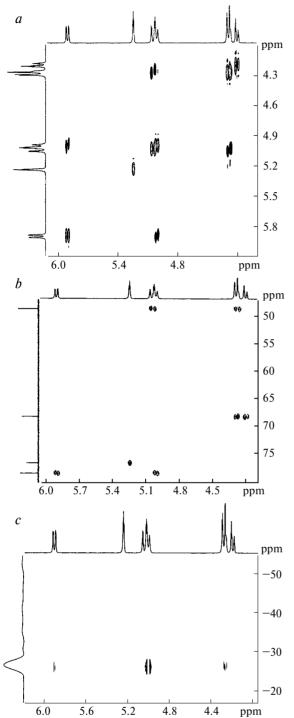
It should be noted that the reaction of sulfamate **4b** with formaldehyde followed by nitration afforded a compound to which the structure of *N*-nitro-5-nitroxytetrahydro-1,3-oxazine (**6b**) was assigned based on the data from ¹H, ¹³C, and ¹⁵N NMR spectroscopy (Table 2), the correlation ¹H-¹H, ¹H-¹³C, and ¹H-¹⁵N NMR spectra (Fig. 1), the IR spectra ((KBr), v/cm⁻¹: 1284, 1552 (NNO₂); 1636 (ONO₂)), the mass spectra (peaks: 193 [M]⁺, 131 [M-ONO₂]⁺, 101 [M-2NO₂]⁺, 85 [M-ONO₂-NO₂]⁺), and the data from elemental analysis (see Table 1). Noteworthy is the large difference in the chemical shifts of the magnetically nonequivalent protons of the CH₂ groups at the nitrogen atoms in the

Table 2. ¹H NMR spectra of nitramines 1 and 6

Com- pound	$\delta,J/{ m Hz}$
1a	3.32 (s, 3 H, OMe); 3.58 (m, 2 H, CH ₂ OMe,
	J = 2.6, 2.6); 3.82 (dd, 1 H, NCH ₂ CH, $J = -11.7$,
	7.3); 4.03 (dd, 1 H, NCH_2CH , $J = -11.7$, 7.3);
	4.47 (m, 1 H, CHO); 5.12 (d, 1 H, NCH ₂ O,
	J = -6.2); 5.40 (d, 1 H, NCH ₂ O, $J = -6.2$)
1b	3.84 (dd, 1 H, CH ₂ Cl, $J = -11.9$, 5.2); 3.87 (dd,
	1 H, NCH_2CH , $J = -11.7$, 7.1); 3.90 (dd, 1 H,
	CH_2CI , $J = -11.9$, 4.5); 4.21 (dd, 1 H, $N\underline{CH}_2CH$,
	J = -11.7, 6.7; 4.65 (m, 1 H, CHO); 5.20 (d, 1 H,
	NCH_2O , $J = -5.8$); 5.47 (d, 1 H, NCH_2O , $J = -5.8$)
1s	3.56 (dd, 1 H, CH_2N_3 , $J = -15.0$, 7.0); 3.67 (dd,
	1 H, CH_2N_3 , $J = -15.0$, 5.6); 3.78 (dd, 1 H,
	N_{CH_2CH} , $J = -13.2$, 8.0); 4.13 (dd, 1 H,
	$N_{CH_2}CH$, $J = -13.2$, 8.3); 4.58 (m, 1 H, CHO);
	5.17 (d, 1 H, NCH ₂ O, $J = -7.0$); 5.48 (d, 1 H,
1.10	$NCH_2O, J = -7.0$
$1d^a$	1.38 (d, 3 H, MeCH, $J = 7.0$); 3.42 (dd, 1 H,
	NCH_2CH , $J = -9.4$, 9.4); 4.12 (dd, 1 H,
	$N_{CH_2}CH$, $J = -9.4$, 6.5); 4.40 (m, 1 H, CHO);
	5.07 (d, 1 H, NCH ₂ O, $J = -6.5$); 5.40 (d, 1 H, NCH ₂ O, $J = -6.5$)
1e	3.95 (t, 2 H, CCH ₂ O, $J = 7.5$); 4.18 (t, 2 H, NCH ₂ C,
16	J = 7.5); 5.20 (s, 2 H, NCH ₂ O)
6a ^a	1.80 (q, 2 H, CH_2CH_2 CH ₂ , $J = 5.7, 5.3, 5.3, 5.7$);
ou	$3.90 \text{ (t, 2 H, OCH2CH2, J = 5.3); 4.07 \text{ (t, 2 H,}}$
	$N_{CH_2CH_2}$, $J = 5.7$); 5.27 (s, 2 H, N_{CH_2O})
$6b^b$	4.20 (dtd, 1 H, OCH ₂ CH, $J = -13.1$, 2.3, 0.7);
0.0	4.28 (dd, 1 H, OCH ₂ CH, $J = -13.1$, 2.1); 4.28 (br.d,
	1 H, NCH ₂ CH, $J = -16.3$); 5.01 (br.d, 1 H, NCH ₂ O,
	J = -12.0); 5.04 (dq, 1 H, NCH ₂ CH, $J = -16.3$, 2.5);
	5.24 (q, 1 H, CHONO ₂ , $J = 2.2$); 5.89 (dd, 1 H,
	NCH_2O , $J = -12.0, 2.1$)
	48.9 (s, NCH ₂ CH); 68.5 (s, OCH ₂ CH); 76.9 (s,
	CHONG) FOO (NICH O)

 $[^]a$ The spectra were recorded on a Bruker AM-300 spectrometer. b The spectra were recorded on a Bruker DRX-500 spectrometer. c $^1\mathrm{H}-^{13}\mathrm{C}$ NMR. d $^1\mathrm{H}-^{15}\mathrm{N}$ NMR.

-26.9 (s, $N-^{14}NO_2$); -45.2 (s, $O-^{14}NO_2$)


 $\underline{\text{C}}\text{HONO}_2$); 78.8 (s, $\underline{\text{NC}}\text{H}_2\text{O})^c$

NCH₂O and NCH₂CH fragments and a rather small difference in these shifts for the CHCH₂O fragment. The assignment of the signals was made based on the data from the ¹H—¹³C NMR correlation spectra assuming that the lowest-field and the highest-field ¹³C signals belong to the NCH₂O and NCH₂CH fragments, respectively. This assignment was confirmed by the correlation ¹H—¹⁵N NMR spectrum. The cross-peaks between the N—¹⁵NO₂ group and the protons of the NCH₂O and NCH₂CH fragments are observed.

According to the data from 1 H NMR spectroscopy (3.92 (dd, 1 H, NCH₂CH, J = -12.3 and 4.9 Hz); 4.24 (dd, 1 H, NCH₂CH, J = -12.3 and 6.74 Hz); 4.70—4.95 (m, 3 H, OCHCH₂ONO₂); 5.22 (d, 1 H, NCH₂O, J = 6.0 Hz); 5.45 (d, 1 H, NCH₂O, J = 6.0 Hz)), isomeric N-nitro-5-nitroxymethyloxazolidine was obtained as an admixture (the yield was ~5%) .

To summarize, a general method was proposed for the preparation of N-nitrooxazolidines 3 and N-nitro-

^{**} Crystalline compounds; m.p. were 19.5-20.5 (**6a**) and 89-90 (**6b**) °C.

Fig. 1. Correlation NMR spectra of compound **6b**: a, ${}^{1}H-{}^{1}H$ NMR; b, ${}^{1}H-{}^{13}C$ NMR; c, ${}^{1}H-{}^{15}N$ NMR.

tetrahydro-1,3-oxazines **6** based on hydroxyl-containing *N*-alkylsulfamates.

Experimental

The ¹H NMR spectra were recorded on Bruker WM-250 (250.13 MHz) and Bruker AM-300 (300.13 MHz) spectrom-

eters in (CD₃)₂CO with HMDS as the internal standard. The 2D ¹H—¹H, ¹H—¹³C, and ¹H—¹⁵N NMR spectra were measured on a Bruker DRX-500 spectrometer. The IR spectra were recorded on a Specord-80 instrument in KBr pellets. The mass spectra were obtained on a MS-3 Kratos spectrometer (EI, 70 eV, the temperature of the ionization chamber was 200 °C, the direct inlet system of the samples).

5-Chloromethyl-*N***-nitrooxazolidine (1b).** A 28% CH₂O solution (4.36 g, 44 mmol) was added to a solution of *N*-(3-chloro-2-hydroxypropyl)sulfamate (**2b**) (9.68 g, 43 mmol) in H₂O (40 mL) and the pH of the reaction mixture was brought to 7.95 (with KOH or HCl). Then the mixture was concentrated *in vacuo*. Potassium salt of 5-chloromethyl-*N*-sulfooxazolidine **3b** was obtained in a yield of 10.20 g. Thereupon this salt was used without additional purification.

Compounds **3a,c-e** were obtained analogously.

Compound **3b** (10.20 g) was added to a mixture of 97% HNO₃ (13 mL) and Ac₂O (47 mL) at the temperature from -10 to -7 °C. The reaction mixture was stirred for 1 h, poured into ice water (90 mL), and extracted with AcOEt (3×30 mL). The extract was washed successively with H₂O and a solution of Na₂CO₃ and then concentrated *in vacuo*. 5-Chloromethyl-*N*-nitrooxazolidine (**1b**) was obtained in a yield of 5.83 g (75%). The solution was distilled and the fraction with b.p. 93–94 °C (1.0–1.2 Torr) was collected.

Compounds 1a,c-e were obtained analogously.

5-Azidomethyl-*N***-nitrooxazolidine (1c).** 5-Chloromethyl-N-nitrooxazolidine (**1b**) (1 g, 6 mmol) was added to a solution of CaCl₂ (1.32 g, 12 mmol) and NaN₃ (0.78 g, 12 mmol) in DMF (10 mL) at 95–100 °C. The reaction mixture was stirred for 5.5 h and poured into H₂O (30 mL). The precipitate that formed was filtered off and the filtrate was extracted with benzene (3×15 mL). The extract was washed with H₂O (7×10 mL) and concentrated. 5-Azidomethyl-N-nitrooxazolidine (**1c**) was obtained in a yield of 0.88 g (85%).

 $N ext{-Nitro-5-nitroxytetrahydro-1,3-oxazine}$ (6b). A 28% CH₂O solution (4.45 g, 49.5 mmol) was added to a solution of potassium $N ext{-}(2,3 ext{-dihydroxypropyl})$ sulfamate (4b) (9.40 g, 45 mmol) in H₂O (25 mL). The pH of the reaction mixture was brought to 7.50 (with KOH or HCl) and the mixture was concentrated *in vacuo*. Potassium salt of 5-hydroxy-N-sulfotetrahydro-1,3-oxazine (5b) was obtained in a yield of 9.95 g. The salt was used without purification.

Sulfamate 5a was prepared analogously.

Sulfamate **5b** was added to a mixture of 97% HNO₃ (15 mL) and Ac₂O (9.95 g, 56 mL) at the temperature from -10 to -7 °C. The reaction mixture was stirred for 1 h, poured into ice water (100 mL), and extracted with AcOEt (3×30 mL). The extract was washed successively with H₂O and a solution of Na₂CO₃ and then concentrated. Nitro-5-nitroxytetrahydro-1,3-oxazine (**6b**) was obtained in a yield of 3.69 g (42%). The residue was recrystallized from EtOH (18 mL). IR (KBr), v/cm⁻¹: 1284, 1552 (NNO₂); 1636(ONO₂).

N-Nitrotetrahydro-1,3-oxazine (**6a**) was prepared analogously.

References

- 1. G. Szimes, Chem. Ber., 1973, 106, 3695.
- F. Mazzetti and R. M. Lemon, J. Org. Chem., 1957, 22, 228.
 W. H. Watanabe and L. E. Conlon, J. Am. Chem. Soc., 1957,

79, 2825.

Received January 14, 2001; in revised form February 12, 2001